ALGEBRA 2 – Unit 3 / Day 7 HOMEWORK: Quadratic Curve Fitting

Name _____

1. Find the equation in standard form $(y = ax^2 + bx + c)$ of the parabola that passes through the points (1, 5), (3, 19), and (-2, 29). Solve algebraically and show all your work.

2.	Given $f(x) = 2x^2 - 4$ and $g(x) = 5x + 3$, find							
a.	f (3a)	b.	f(a + b)					
с.	f(5x + 3)	d.	g(f(x)) = 23					

4. Use the following matrices and your brain (**NO CALCULATOR**). If it can't be done, write undefined.

9. The coordinates of the endpoints of \overline{CD} in the standard (x, y) coordinate plane are (-4, -2) and (14, 2). What is the *x*-coordinate of the midpoint of \overline{CD} ?

	0	n	2	$\mathbf{\alpha}$	~	D	0		10
A.	0	в.	2	C.	2	D.	9	E.	10
	•		-		÷		-		

10. What is the surface area, in square units, of an 8 inch cube?

A. 512 B. 384	C. 320	D. 256	E. 192
-----------------------------	---------------	---------------	---------------

8. a. Use the algebraic strategies you developed to solve the system of equations below.

x + y + z = 3 2x - y + 2z = 63x + 2y - z = 13

b. Solve the same system using matrices. Show your matrix equation and your solution. **Use your graphing calculators.**

IMPORTANT VOCABULARY for Unit 4:

(Answers to this section will be posted on Google Classroom. Use that to fill in this section.)

Monomial -

Polynomial -

The Degree of a Polynomial

A polynomial is in Standard Form

A polynomial is in Factored Form

 A _________ of a polynomial is the ________ found by setting its

 ________ equal to zero.

 A polynomial has the _______ number of _______ as its _______.

 The real root is also an _______ on the graph of the polynomial.

What is the maximum number of roots a polynomial of degree 3 can have? a polynomial of degree 8?

Is it possible for the graph of a polynomial to have fewer *x*-intercepts than its degree? Explain.

For each polynomial function, state the minimum degree its equation can have.

i. ii. iii.

How can you tell the minimum degree of a polynomial by the number of "bumps" on its graph?

End Behavior:

Orientation: Right Arrow points up Degree: Both Arrows Point in the Same Direction

Right Arrow points down

Both Arrows Points in Different Directions