\qquad
HOMEWORK: Quadratic Curve Fitting

1. Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ of the parabola that passes through the points $(1,5),(3,19)$, and (-2, 29). Solve algebraically and show all your work.
2. Given $f(x)=2 x^{2}-4$ and $g(x)=5 x+3$, find...
a. $f(3 a)$
b. $\quad f(a+b)$
c. $\quad f(5 x+3)$
d. $\quad g(f(x))=23$
3. Use the following matrices and your brain (NO CALCULATOR).

If it can't be done, write undefined.
$\left.\begin{array}{|llll|}\hline & A=\left[\begin{array}{ll}1 & -1 \\ 3 & -2\end{array}\right] \quad B=\left[\begin{array}{cc}0 & 2 \\ -2 & 1 \\ -1 & 0\end{array}\right] \quad & C=\left[\begin{array}{lll}3 & -3 & -1 \\ 2 & -2 & 4\end{array}\right] \quad D=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \\ \hline \text { a. } 3 A B & \text { b. } 2 A+4 D & \\ \hline\end{array}\right]$
9. The coordinates of the endpoints of $\overline{C D}$ in the standard (x, y) coordinate plane are $(-4,-2)$ and $(14,2)$. What is the x-coordinate of the midpoint of $\overline{C D}$?

A. 0	B. 2	C. 5	D. 9	E. 10

10. What is the surface area, in square units, of an 8 inch cube?
A. 512
B. 384
C. 320
D. 256
E. 192
11. a. Use the algebraic strategies you developed to solve the system of equations below.

$$
\begin{aligned}
& x+y+z=3 \\
& 2 x-y+2 z=6 \\
& 3 x+2 y-z=13
\end{aligned}
$$

b. Solve the same system using matrices. Show your matrix equation and your solution. Use your graphing calculators.

IMPORTANT VOCABULARY for Unit 4:

(Answers to this section will be posted on Google Classroom. Use that to fill in this section.) Monomial -

Polynomial -

The Degree of a Polynomial

A polynomial is in Standard Form

A polynomial is in Factored Form

A \qquad of a polynomial is the \qquad found by setting its
\qquad equal to zero.

A polynomial has the \qquad number of \qquad as its \qquad .

The real root is also an \qquad on the graph of the polynomial.

What is the maximum number of roots a polynomial of degree 3 can have? a polynomial of degree 8 ?

Is it possible for the graph of a polynomial to have fewer x-intercepts than its degree? Explain.

For each polynomial function, state the minimum degree its equation can have.
i.

ii.

iii.

How can you tell the minimum degree of a polynomial by the number of "bumps" on its graph?

End Behavior:

Orientation:
Right Arrow points up

Right Arrow points down

Degree:
Both Arrows Point in the Same Direction

Both Arrows Points in Different Directions

