1. Determine whether the following equations represent exponential growth or decay. Find the percent increase or decrease.
a. $\quad y=72(1.6)^{x}$
b. $\quad y=24(0.8)^{x}$
c. $y=3\left(\frac{6}{5}\right)^{x}$
d. $\quad y=7\left(\frac{2}{3}\right)^{x}$
2. A new car that sells for $\$ 18,000$ depreciates 12% per year. Write a function that models the value of the truck.

Find the value of the truck after 4 years.
3. A bear population increases at a rate of 2% per year. The initial population was 1573 bears. Write a function that models the bear population.

How many bears will there be in 10 years?
4. Five years ago you invested money in an account with 2.5% interest compounded continuously. The account now has $\$ 3000$. How much money did you originally invest?
6. How long will it take you to triple your investment at an annual interest rate of 4.25% compounded daily?
(You will need you graphing calculator...)
b. How long would it take if the same investment was compounded continuously?
7. VERIFY the following trig identities. Remember: You can only work on one side of the equation!!
a. $\cos \theta=\sec \theta-\sin \theta \tan \theta \quad$ b. $\sin ^{2} \theta=\cos \theta(\sec \theta-\cos \theta)$
8. Given: $\sin \theta=\frac{-5}{7}$ and $\pi \leq \theta \leq \frac{3 \pi}{2}$, find the other 5 trig ratios.
9. Graph $y=-5 \sin \left(\frac{2}{3}\left(\theta+\frac{\pi}{4}\right)\right)$

10. Graph $y=\tan \left(\frac{1}{3}\left(\theta+\frac{3 \pi}{2}\right)\right)+4$

11. Write an exponential equation that passes through the points $(1,4)$ and $(4,864)$ 12. Solve the following trig functions for $0 \leq \theta<2 \pi$.
a. $\quad 2 \cos ^{2} \theta-1=0$

12b. $\tan ^{2} \theta-\sqrt{3} \tan \theta=0$
12c. $\quad 4 \sin ^{2} \theta-4 \sin \theta=-1$
12d. $\sin \theta \tan \theta=0$

