ALGEBRA 2 - Unit 8 / Day 10
Name \qquad
HOMEWORK: Team Challenge Review

1. Use \log properties rewrite as a single logarithm. $\frac{2}{3} \ln x-\frac{3}{4} \ln (x-2)+3 \ln (2+x)-\frac{5}{6} \ln z$
2. Use log properties to expand the logarithm and evaluate where possible: $\log _{2}\left(\frac{8 \sqrt{x^{3}} y^{7}}{(w-1)^{4} \sqrt[5]{z^{2}}}\right)$
3. Use \log properties to evaluate the following expressions.
a. $\quad \frac{1}{3} \log _{4}\left(\frac{1}{64}\right)-\frac{3}{5} \log _{4} 32+2 \log _{4} 8$
b. $\quad \frac{1}{2} \log _{3} 4+2 \log _{3}\left(\frac{1}{6}\right)-\log _{3}\left(\frac{1}{6}\right)$
4. NO CALCULATOR... Use only your powers chart. Evaluate each logarithm.

| a. $\log _{2} 128=7$ | c. $\log _{4} 1=?$ | | |
| :--- | :--- | :--- | :--- | :--- |

5. Find the inverse for the following equations.
a. $y=16(x+1)^{2}+7 \quad$ b. $\quad y=\frac{4 x+1}{3 x-4}$
6. Solve the following for x. Get exact and approximate answers to the nearest thousandth.
a. $5(2)^{3 x-1}+6=21 \quad$ b. $\frac{1}{3} e^{5 x}+4=7$
c. $\quad-3 \log _{7}(5 x+4)+16=10$
d. $\quad \ln (3)+\ln (x+5)-\ln 4=\ln 6$
7. Suppose you invest $\$ 12,000$ into an account that earns interest compounded monthly. If you have $\$ 16,000$ after 15 years, find the interest rate for the account.
8. When cell phones were introduced in 1985, the small town of Centerville had 285 cell phone users. By 1990, the number of cell phone users had increased to 1,827 .
a. Write an exponential equation to model the situation.
b. Assuming the number of cell phone users grows exponentially; when will the number of users reach 10,000 ?
9. Suppose you invest $\$ 6500$ at an annual interest of 3.75% compounded continuously.
a. How much will you have in the account after 12 years?
b. How much should you have invested initially in the same account if you wanted to have $\$ 8600$ after five years?
c. How long will it take for the account in part (a) to reach $\$ 10,500$?

