ALGEBRA 2 – Unit 8 / Day 10 HOMEWORK: *Team Challenge Review*

Name ______

1. Use log properties rewrite as a single logarithm.
$$\frac{2}{3}\ln x - \frac{3}{4}\ln(x-2) + 3\ln(2+x) - \frac{5}{6}\ln z$$

- 2. Use log properties to **expand** the logarithm and **evaluate** where possible:
- $\log_2\left(\frac{8\sqrt{x^3}y^7}{\left(w-1\right)^4\sqrt[5]{z^2}}\right)$

3. Use log properties to **evaluate** the following expressions.

a.	$\frac{1}{3}\log_4\left(\frac{1}{64}\right) - \frac{3}{5}\log_4 32 + 2\log_4 8$	b.	$\frac{1}{2}\log_3 4 + 2\log_3\left(\frac{1}{6}\right) - \log_3\left(\frac{1}{6}\right)$

4. NO CALCULATOR... Use only your powers chart. Evaluate each logarithm.

a. log _? 128 = 7	b. log ₄ 1 = ?	c. $\log_2 ? = -4$	d. $\log_{625} 5 = ?$
e. $\log_3? = 5$	f. $\log_3 \frac{1}{729} = ?$	g. $5\ln e^2 = ?$	h. $\log_{16} \frac{1}{32}$
i. $\log_{216}? = \frac{2}{3}$	j. $\log_{343} \frac{1}{2401} = ?$	k. $\log_{81}? = \frac{3}{4}$	$l. \log_{128} \frac{1}{32} = ?$

5. Find the inverse for the following equations.

a. $y = 16(x+1)^2 + 7$	b. $y = \frac{4x+1}{3x-4}$

6. Solve the following for *x*. Get exact and approximate answers to the nearest thousandth.

a.	$5(2)^{3x-1} + 6 = 21$	b. $\frac{1}{3}e^{5x} + 4 = 7$
c.	$-3\log_7(5x+4) + 16 = 10$	d. $\ln(3) + \ln(x + 5) - \ln 4 = \ln 6$
c.	$-3\log_7(5x+4) + 16 = 10$	d. $\ln(3) + \ln(x + 5) - \ln 4 = \ln 6$
C.	$-3\log_7(5x+4) + 16 = 10$	d. $\ln(3) + \ln(x + 5) - \ln 4 = \ln 6$
C.	$-3\log_7(5x+4) + 16 = 10$	d. $\ln(3) + \ln(x + 5) - \ln 4 = \ln 6$
c.	$-3\log_7(5x+4) + 16 = 10$	d. $\ln(3) + \ln(x + 5) - \ln 4 = \ln 6$
C.	$-3\log_7(5x + 4) + 16 = 10$	d. $\ln(3) + \ln(x + 5) - \ln 4 = \ln 6$
c.	$-3\log_7(5x+4) + 16 = 10$	d. $\ln(3) + \ln(x + 5) - \ln 4 = \ln 6$
c.	$-3\log_7(5x+4) + 16 = 10$	d. $\ln(3) + \ln(x + 5) - \ln 4 = \ln 6$

7. Suppose you invest \$12,000 into an account that earns interest compounded monthly. If you have \$16,000 after 15 years, find the interest rate for the account.

- 8. When cell phones were introduced in 1985, the small town of Centerville had 285 cell phone users. By 1990, the number of cell phone users had increased to 1,827.
 - **a.** Write an exponential equation to model the situation.

b. Assuming the number of cell phone users grows exponentially; when will the number of users reach 10,000?

- 9. Suppose you invest \$6500 at an annual interest of 3.75% compounded continuously.a. How much will you have in the account after 12 years?
 - **b.** How much should you have invested initially in the same account if you wanted to have \$8600 after five years?
 - c. How long will it take for the account in part (a) to reach \$10,500?

10. Graph $y = -3\log_2(x + 4) - 5$		Parent Equation in Exponential Form:	
Describe Transformations in words:			
		Graph	:
Table:			10
x	у		5
		<	-5 -10 x
			-5-
			-10
Asymptote: Domain:			↓ Range: